New taxa and combinations for *Oedogonium* and *Bulbochaete* (Oedogoniales, Chlorophyceae) in Australia

Stephen Skinner and Timothy J. Entwisle

National Herbarium of New South Wales, Mrs Macquaries Road, Sydney NSW 2000 Australia

Abstract

Fifteen new taxa in the Oedogoniaceae, the species *Bulbochaete kakaduensis* [for *B. elatior* sensu Scott & Prescott (1958)] *B. rodwayi*, *Oedogonium bancroftii*, *Oe. capricorniculum*, *Oe. cerasinum*, *Oe. cribbianum*, *Oe. hardyi* [for *Oe. monile* var. *victoriense* G.S.West] *Oe. moebiusii* [for *Oe. undulatum* var. *möbiusii* Schmidle] *Oe. pilbaranum* and *Oe. utrarium*, and the varieties *B. calospora* var. *murrayana*, *B. gigantea* var. *glabra*, *B. wuhanensis* var. *spechtii*, *Oe. kwangsiense* var. *playfairii* and *Oe. starmachii* var. *weetalibahense* are described. Two other taxa are new combinations: *Oe. undulatum* var. *wissmanii* for *Oe. wissmanii* Stephen Skinner and *Oe. uleanum* var. *continuum* for *Oe. platygynum* var. *continuum* Nordstedt ex Hirn.

Introduction

Seventeen taxa (8 species and 4 varieties of *Oedogonium*, 2 species and 3 varieties of *Bulbochaete*) require taxonomic review in preparation for an account of the Oedogoniales (Chlorophyta) for the Algae of Australia series. Most are new taxa and require formal taxonomic recognition. A few require revision of status, although previously described. The taxa are arranged in systematic order following Mrozińska (1991, 2000).

The earliest mention of *Oedogonium* from Australia in the literature is Sonder (1852) but without description or illustration. Next comes Berkeley and Harvey’s (1860) enthusiastic description of *Oe. monile*. It was Baron von Mueller who laid the Australian foundation for freshwater phycology generally and whose enthusiasm sparked the first local interest in the Oedogoniales. Mueller encouraged people in all parts of the continent to send him curious and unexpected plants, and so received quite a few freshwater algal samples including numerous Oedogoniales. F.M. Bailey in Brisbane made a major contribution in the late 19th and early 20th Century. All three Bailey papers (1893, 1895, 1898) include *Oedogonium* and *Bulbochaete* species.

Hirn’s (1900) world monograph of the Oedogoniales, the starting point for nomenclatural priority in this order, used collections from the herbaria of Mueller and Bailey, sent to V.B. Wittrock, M. Möbius, W. Schmidle and C.F.O. Nordstedt. Although Hirn did not designate types as such, there are ten taxa based solely on Australian
collections. Four of these (and also numerous new desmid taxa) come from a single collection by T. Gulliver made ‘between the Norman and Gilbert Rivers’ in 1874. We have been able to find and view this collection, and some others from Australia, in LD, but not all Hirn ‘types’ could located. In the absence of voucher material, we have relied on protologues and subsequent monographs and floras to define existing taxa.

Further records of Oedogoniales from parts of Australia can be found in Scott and Prescott (1958) for Arnhem Land, Skinner (1980) for the New England Tableland of New South Wales, and the many contributions of Cribb to the Queensland Naturalist (see Day et al. 1995 for a list). Cribb (1956) provides the only report of Oedocladium in Australia.

This paper uses material from historical collections in AD, MEL and BRI, as well as recent collections forwarded to us from collectors across the continent and our own recent collections.

Methods

Recent collections were fixed in either 4% formaldehyde or 70% ethanol in the field, and sent to the National Herbarium of New South Wales where part of each sample was mounted in 40% Karo as semi-permanent slides, while the remainder of the specimen was stored in 70% ethanol and 5% glycerine. Slides were examined with a Leitz Dialux compound microscope and drawings made with a drawing tube. Collections from MEL, AD and BRI were also examined. Data sheets for each collection are also retained at NSW.

Oedogonium Link

Mrozińska (1991) defined 20 informal groups for Oedogonium, based on phylogenetic analysis. Later she (Mrozińska 1999) presented a new subgeneric classification and allocated her informal groups to this new infrageneric system, which we follow here. Mrozińska (pers. comm.) kindly provided us with a list of how she has allocated taxa within this new system.

Subgenus *Archaeoedogonium* Mrozińska (1999)

Cell walls, possibly excepting antheridia, helically striped with finely granulate or punctate outer surface; basal cell globose or depressed globose, vertically plicate. Antheridia either intercalary with single spermatozoids or in globose, single-celled dwarf males.

Group A

Macrandrous taxa.

Oedogonium cribbianum Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: *Oedogonio fasciculato* simile, sed macrandro et oosporis globosis depressis dense verrucosisque.
Type: Queensland: Surveyors Gully, Lake Broadwater (27° 21’S; 151° 06’E), *Cribb 1090.4*, 21 Feb 1987 (holo BRI).

Illustration: Fig. 1, a–d.

Macrandrous, monoecious or dioecious. *Vegetative cells* capitellate, finely helically punctate, L/D (3–)5–10, (14–)16–18 μm diam., chloroplast reticulate, few pyrenoids; *basal cell* hemispherical, vertically plicate, 12–15 μm long, 22–23 μm diam.; *terminal cell* shallowly domed. *Oogonium* solitary, globose to depressed globose, punctate, intercalary or occasionally terminal (and then with a domed top), circumcision median, wide at one side, 34–41 μm long, 40–44(–46) μm diam.; *oospore* depressed globose, not filling oogonium, golden to reddish golden, exospore banded verrucose, 29–32 μm long, 35–38 μm diam.; *suffultory cell* as vegetative cells, frequently L/D 3–4. *Antheridia* solitary
to triple, short (L/D c.1.5) same width as surrounding vegetative cells, top opening, in groups with vegetative cells between, either several cells above or below an oogonium or on separate filaments, with one spermatozoid.

Etymology: named in honour of Professor Alan B. Cribb who has done so much to alert people to the fascination of freshwater algae.

Distribution: known from type locality in Queensland, on *Vallisneria* sp. and northern New South Wales on *Myriophyllum* sp.

Very similar to *Oe. fasciculum* Zhu (1964) from China but differs in not being nannandrous, and in having slightly more depressed oospores with more regular and dense cover of verrucae. Cribb’s (1988) determination of *Oe. punctato-striatum* de Bary ex Hirn is superficially similar to the type, but that taxon has smooth oospores.

Subgenus *Prooedogonium* Mrozińska (1999)

Cell walls smooth; basal cells globose to depressed globose, hemispherical or if vase-like then a short goblet, L/D no more than 3. Antheridia with single spermatozoid, macrandrous or nannandrous, and then internal.

Section C

Macrandrous; basal cell hemispherical, occasionally short vase-like; oogonium usually depressed globose, oospore smooth walled.

Oedogonium utrarium Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: species bene distincta, cellula suffultoria reflexa, oogonio asymmetrico globoso utriculoide, oospora quoque biconica sulcoque medio.

Type: Western Australia: pool in bed of tributary of Hammersley R., Fitzgerald River Nat. Pk (33°46’S; 119°43’E), *Towler 283c & Wilson*, 10 Aug 2003 (holo NSW).

Illustration: Fig. 1, e–i.

Macrandrous, dioecious. *Vegetative cells* narrow cylindrical, L/D 4–6, 2.5–3.5 μm diam.; *basal cell* irregular depressed globose, 4–5.5 μm high, 5–5.5 μm diam.; *terminal cell* truncated. *Oogonium* solitary or paired, irregularly saccate, , 23–28 μm long, 10–12 μm diam., circumcursion median, wide; *oospore* irregular bi-conical, with median furrow, wall smooth but lumpy, not filling the chamber but forcing the circumcursion open, 14–19 μm long, 10–12 μm diam.; *suffultory cell* as vegetative cell but reflexed, so that the filament is curled through 90–180°. *Antheridia* solitary or paired, terminal on separate filament, 5.5 μm long, 2–3 μm diam., single spermatozoid.

Etymology: from *utrarius* (Latin) a water-bag carrier in the Roman army. These waterbags were frequently made from whole goat or other animal skins, like wineskins, and the oogonia of this taxon are similar in shape.

Distribution: known only from the type locality, Western Australia, in a deep riverine pool on granite with aquatic grass, apparently forming a greenish layer close to the gravel.
While sharing vegetative characters with the rest of Group C, this taxon is distinctive in possessing the bent suffultory cell and the lumpy, irregular, wineskin-shaped oogonium as well as the bi-conical oospore with a median furrow. There are no other taxa with similar oogonia.

Oedogonium cerasinum Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: *Oedogonio fremyi* simile sed oogonio pyriformi angulari et cellularibus vegetativis capitellatibus celluloque basi hemispherico.

Type: Western Australia: Brixton Street wetland, Kenwick, Perth (32° 22’S; 115° 56’E), *Cherry* 446, 9 Sept 2002 (holo NSW).

Illustration: Fig. 2, a.

Fig. 2. *Oedogonium cerasinum*. a, individual antheridial, vegetative and oogonial thalli (*Cherry 446*); *Oe. pilbaranum*. b, vegetative filament; c, antheridia; d, oogonium; e, oogonium with mature oospore (*Edinger 3516*); *Oe. uleanum var. continuum*: f, terminal series of oogonia; g, top view of oogonium; h, intercalary series of oogonia (*Cribb 496.9*). (Scales = 20 μm)
Dioecious, macrandrous. *Vegetative cells* capitellate, 15–23(–26) μm long, (3–)6–6.5 μm diam., three to seven or eight in a whole plant; *basal cell* shallow hemispherical, 3–5 μm high, 35–50 μm diam.; both male and female plants terminate in a very long, (up to three or four times the length of the rest of the thallus) fine seta. *Oogonium* pyriform to angular pyriform, 15–21 μm long, 17–20 μm diam., often acropetal, opening by a supreme hinged pore (or partial circumcision); *oospore* closefitting oogonium, pyriform to angular pyriform, wall smooth, thick, laminated, mesospore yellowish to cherry red, 14–20.5 μm long, c.17–20 μm diam. *Antheridia* paired, below seta on male plant, chambers 6–8.5 μm long, 6 μm diam, single spermatozoid.

Etymology: as the oogonia are cherry-shaped, the mesospore cherry red in colour and the collector was Wayne Cherry, *cerasinum* (Latin) for cherry-like seems appropriate.

Distribution: known only from the type locality, Western Australia, where it is epiphytic on fine, terete stems of water plants in both still and moving water.

Oedogonium cerasinum is one of a number of species with few-celled filaments, including *Oe. mirpurens* İslam, *Oe. fremyi* Gauth.-Lièvre, *Oe. nanum* Wittr. ex Hirn, *Oe. capitellatum* Wittr. ex Hirn, *Oe. sphaerandrium* Wittr. & Lundell ex Hirn, and *Oe. longipilum* Jao. *Oe. cerasinum* is distinctive in the following combination of characters: dioecious, distinctly angular pyriform oogonia, and a shallowly hemispherical basal cell. It is closest to *Oe. longipilum* and *Oe. fremyi*. It shares a terminal seta and supreme circumcision with *Oe. longipilum*, but that species has a short, vase-shaped basal cell, and ovoid oogonia, sometimes in pairs. *Oe. fremyi* has a supramedian circumcision, the oogonium is globose, the basal cell is diffuse and the vegetative cells are less consistently capitellate than *Oe. cerasinum*.

Group G

Macrandrous; basal cell shortly vase-like; oogonium opening through a median to superior pore, or pore and slit; oospore smooth.

Oedogonium pilbaranum Stephen Skinner & Entwisle **sp. nov.**

Diagnosis: *Oedogonio rufescente* simile sed in dimensiones minore atque circumcissione oogonii rostrato.

Type: Western Australia: 28 km SSW of Turee Creek Station (23° 52’S; 118° 32’E), *Edinger* 3516, 9 May 2003 (holo NSW).

Illustration: Fig. 2, b–e.

Macrandrous, dioecious. *Vegetative cells* cylindrical or slightly capitellate, L/D 3–10, 7–8 μm diam.; *basal cell* depressed globose, slightly undulate, c.10 μm tall, 13–14 μm diam.; terminal cell ending in a shallow cap. *Oogonium* solitary or paired, depressed globose to spindle-like, 20–26 μm long, 20–23 (–25) μm diam., opening a supramedian pore or short slit; *oospore* depressed globose, smooth walled, filling chamber, mesospore brown, 18–19 μm long, 20 μm diam.; *suffultory cell* as vegetative cells. *Antheridia* intercalary or acropetal, in pairs, 7–10 μm long, c.7 μm diam.; single spermatozoid.

Etymology: from Pilbara, the region of Western Australia from which the sole collection was made.
Oedogonium & Bulbochaete (Oedogoniales, Chlorophyceae) Telopea 11(2): 2006

Distribution: known only from the type locality, Western Australia, in a permanent seepage.

Although very close to the cosmopolitan *Oe. rufescens* Wittr. ex Hirn, this specimen shows a globose basal cell, more similar to those of *Oe. inversum* Wittr. ex Hirn and *Oe. infirmum* Tiffany, and the oospore is more nearly globose, not tending to be laterally ovoid/elliptical. The oospore fills the chamber and conforms to its shape to some extent, exhibiting a slight dome below the terminal dome of the oogonial chamber.

Subgenus Oedogonium Mrozińska (1999)

Cell walls smooth; basal cell short to elongate vase-shaped, usually with a basal disc which may be clawed.

Supersection Monospermatozoidiae

Antheridia with single spermatozoid; in nannandrous species either internal in goblet-like dwarf male, or extruded from the body cell, with diffuse antheridial walls.

Group E

Macrandrous or nannandrous; dwarf males with internal antheridia; basal cell shortly vaselike; oogonia with median whorl of projections or ribs.

Oe. platygynum var. *continuum* Nordstedt ex Hirn (1900).

Type: New Zealand: Ohaeawai, (35° 21’S; 173° 53’E), Berggren(64): Herb Nordstedt, (LD n.v.).

Illustration: Nordstedt op cit: Pl. 1, figs 16, 17; hic Fig. 2, f–h.

Dioecious, macrandrous. *Vegetative cells* cylindrical to slightly capitellate, L/D 2.5–3.5, 7–8 μm diam.; *basal cell* not seen; *terminal cell* obtusely capped. *Oogonia* solitary, in pairs, threes, fours (common) or fives, depressed globose, 13.5–23 μm long, 18–25 μm diam., flanges prominent rounded mamillate, circumcision submedian; *oospore* depressed globose to spherical, not filling the chamber, 14–18 μm diam.; *suffultory cells* similar to vegetative cells. *Androsporangia*, dwarf males or antheridia not observed.

Distribution: Queensland in seepage on upper shelf near entrance of cave, and in New Zealand.

The Queensland and New Zealand collections are of the same taxon. Nordstedt (1887, 1888) described the New Zealand taxon as a variety of *Oe. platygynum* Wittr. ex Hirn. However *Oe. platygynum* var. *platygynum* is described as nannandrous and figured with dwarf males, and the flanges are rounded. Nordstedt (1887) contains the six word protologue for *Oe. platygynum* var. *continuum* Nordstedt, while the illustrations, including the antheridia/androsporangia, are in Nordstedt (1888). This taxon is clearly a macrandrous taxon, and the flanges are often slightly truncated. Although the oogonia and oospores are rather smaller than *Oe. uleanum* as described...
in Hirn (1900) (oogonia 28–32 μm diam., 21–26 μm long) the Queensland and New Zealand collections have oogonia in series and otherwise fit closer to Oe. _uleanum_ than _Oe. platygynum_. Interestingly Hirn (1900, p. 279) queried the position of _Oe platygynum var. continuum_ and expressed the desire for more information. “Für die Var. _continuum_, die leider noch wenig bekannt ist, sind die reihenständigen Oogonien und die abgestutzte Form der Oogoniumvorsprünge hervortretende Merkmale.” [As for the var. _continuum_, unfortunately we do not know as yet if having oogonia in series and truncated oogonial wall flanges are characteristic enough to make it distinct.] This record from Queensland was not included in Cribb (1965).

Specimens examined: Queensland: Paradise Cave, Noosa Heads, _Cribb 496.9_, 13 Oct 1962 (BRI).

Group P

Nannandrous; dwarf males with a basal cell and internal antheridia later extruded; vegetative cells may have undulate walls; oogonia with inframedian to supramedian circumcision; oospore smooth or variously sculptured.

When establishing this group Mrozińska (1991) allowed only _Oe. undulatum_ and _Oe. croasdaleae_ Jao as examples, and later listed _Oe. undulatum_ var. _undulatum_ f. _undulatum_ and f. _senegalense_, _Oe. undulatum_ var. _americanum_ Transeau f. _americanum_ and f. _serriatum_ (Prescott) Mrozińska, _Oe. mirificum_ Zhu and var. _minus_ Jao, _Oe. croasdaleae_ and f. _goeckalkowicensis_ Mroz. Webb in the group (Mrozińska, pers. comm.). We have adopted a much wider definition here, based on comparison of the dwarf male structures in _Oe. undulatum_ with those in _Oe. hians_ Nordstedt & Hirn in Hirn, _Oe. monile_ and similar taxa, where the antheridial cell appears to be extruded from the body cell and to contain only a single spermatozoid at a time. The fine structure of dwarf males of members of this group requires examination similar to Leonardi et al. (1998) for _Oe. pluviale_ Nordst. ex Hirn.

Oedogonium moebiusii Stephen Skinner & Entwisle _sp. nov._

Oedogonium undulatum var. _möbiusii_ Schmidle, _Flora_ 82: 297, fig.1 (1896). Type: Burpengary, _Bancroft_; 1894?: Herb. Schmidle (B probably lost, n.v.).

Diagnosis: a _Oedogonio undulato_ parietium tholis concavis in ambobus cellulis vegetabilis androsporangiisque differt.

Type: Queensland: Peregian Beach (26° 30’S; 153° 06’E), _Peberdy s.n._, Sept 1973: (holo BRI).

Illustration: Fig. 3, a–d.

Nannandrous, gyn- or more frequently idioandrosorous. _Vegetative cells_ undulate with 4 invaginations, 3 complete, 2 short, flat to concave vaults, L/D 3–4(–5), 15–22 μm diam.; _basal cell_ vase-shaped, smooth walled; _terminal cell_ with domed cap (sometimes as terminal oogonium). _Oogonium_ spherical, inframedian hinged pore becoming circumcision, solitary, paired or up to 6 in a row, 46–75(–87) μm long, 44–64(–75) μm diam.; _oospore_ spherical, 44–58(–67) μm diam., thick walled, lamellate and occasionally with faint denticulations below outer wall, chinese-red mesospore, almost filling oogonium.; _suffultory cell_ similar to vegetative cells, but at the broad end
of sizes, 19–23 μm diam.. *Androsporangia* undulate walled, 1–3(–4), often below the groups of oogonia, c. 15 μm long, c. 12 μm diam.; dwarf male on suffultory cell, curved vase-shaped body cell, 28–44 μm long, 8–12 μm diam., upper internal antheridium, 6–9 μm long, 6 μm diam. (body cell as lower antheridium), single spermatozoid.

Distribution: fertile material from Western Australia, South Australia, New South Wales and Queensland, with vegetative material noted for Victoria, in still or slow flowing habitats; Argentina, probably widespread (sometimes reported as *f. incisum* Hansg. or *f. senegalense* Nordst.).

Schmidle’s iconotype is of a poorly sketched vegetative fragment, and Bancroft’s specimen appears to have been lost. We have used the Schmidle epithet to describe a new species rather than make a new combination based on inadequate material.
Peberdy s.n. has all reproductive structures, and is from coastal south-eastern Queensland like the Bancroft collection. Hirn (1900), in a long and strongly worded discussion of the variation in *Oe. undulatum* sens. lat., insists that he found no consistency in the vaulting of undulations of cells even within the same filament. There is no distinction made between ‘integris’ and ‘repandis’ cell kinds in the Hirn (1900) protologue until you get to the various forms; ‘integris’ referring to those forms with the evenly undulate wall outline, and ‘repandis (= bent back’) to those with the concave wavetops. Formae δ and ε of *Oe. undulatum* and the subforma below *Oe. undulatum f. senegalense* (Nordstedt) Hirn all show what Hirn called repand waves. Hirn (1900) quotes Hansgirg as being of the same opinion, even though forma β *incisum* Hansg. is Hansgirg’s (1886) published interpretation, and he was confident enough to distribute exsiccatae under that name. Herring (1914) illustrated reproductive material of forma ε and contended that it was the common forma in Schleswig-Holstein. A clear illustration of both wall forms is given in Fig. 5c in Velez (1995).

Hirn’s observation has not been the experience with Australian material examined for this study. Communities of filaments with either smoothly undulate cells or with concave vaulting have been the norm, all cells in any filament being similar in wall form. Intergrading forms, if present at all, are extremely rare. There are three known sites (Brixton St wetland, Ham Common, and Collector) where both forms of filaments may be found in the same sample, but the cells are consistent within each filament. Vélez (1995) pointed out that culture studies of filaments of various forms of *Oe. undulatum* sensu lato should clear up this problem once and for all, a sentiment with which we concur. Preliminary results indicate that culture strains are morphologically consistent (Vélez, pers. comm.). Culture studies may also demonstrate the worth of Hirn’s other subgeneric character in *Oedogonium undulatum*, number of oogonia in sequence, which in Australian material of both *Oe. moebiusii* and *Oe. undulatum* varies widely within any one sample. With significant vegetative and reproductive differences, there is strong support for the distinction between these two varieties of *Oe. undulatum*. Collections of sterile filaments fitting *Oe. moebiusii* in Australia can be separated readily from filaments of *Oe. undulatum* (4 inflexions and 3 domes with 2 half-domes).

Type: New South Wales: Northern Tablelands: Bullock Ck (30° 07’S; 152° 15’E), *Skinner s.n.*, Dec 1974 (NSW).
Illustration: Skinner, op.cit.: fig. 3.3a–c.

Nannandrous, idioandrosporous. **Vegetative cells** evenly undulate with four grooves and five domes, L/D 2.5–4, 15–27 (–30) μm diam., few large pyrenoids; **basal cell** tall, waisted vase shaped with digitoid holdfast.; **terminal cell** (sometimes oogonium) with domed cap. **Oogonium** solitary or in series 2–6, globose, 57–88 μm long, 45–72 μm diam., inframedian hinged circumcision; **oospore** globose, 56–67 μm diam., outer wall thick, opaque, often with a pinch opposite the opening of the circumcision, mesospore chinese-red; **suffultory cell** variable, from as vegetative cells to tumid, 18–28 μm diam. **Androsporangia** solitary or in series 3–5, two undulations, 16–23 μm long, 11–16 μm diam.; **dwarf male** narrow clavate, 45–54 μm long, 9–11 μm diam., antheridia internal, single spermatozoid.

Distribution: Western Australia, Northern Territory, New South Wales and Queensland, in both still and running water.

We have submerged the Skinner (1980) taxon in *Oe. undulatum* as var. *wissmanii*, for Australian material, because the undulate androsporangia which distinguish this variety from *Oe. undulatum* var. *undulatum*, were previously mistakenly described as antheridia in Skinner (1980). The type slides of *Oe. wissmanii* show 1) *Oe. undulatum* var. *undulatum*-like vegetative cells, 2) androsporangia with the undulate walls, and 3) no dwarf males on the oogonium. More recent collections confirm the presence of dwarf males similar to those of the type variety. The width of cells in the same filament in wild populations may vary by a factor of two in a distance of ten or fewer cells.

Novis (2003) appears to have a similar taxon, cited as *Oedogonium* sp. aff. *Oe. wissmanii*, from Chatham Island, New Zealand.

Oedogonium hardyi Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: Aut grande aut grandiore *Oedogonia monile* var. *eminente*, sed circumcisione oogonii medio, strato medio exosporae stellato spiraleque, stipa nannandrii longissima et gracile.

Type: Western Australia: tributary Hammersley R., Fitzgerald River Nat. Pk (33° 46’S; 119° 42’E), *Towler 283a & Wilson 10 Aug 2003* (holo NSW).

Illustration: Fig. 3, e–g.
Nannandrous, gyn- or more often idioandrosporous. Vegetative cells regular cylindrical, L/D 4–7(–8), 11–15(–20) μm diam., ♀ usually finer; basal cell tall vase-like, 70–75 μm long, 15–16 μm diam.; terminal cell with domed cap. Oogonium solitary or paired (the upper one slightly larger than the lower one), globose, 58–81 μm long, 52–61 μm diam., circumcision median or submedian; oospore globose, 38–45(–51) μm diam., outer exospore smooth, inner exospore tightly spiraled serrations, mesospore red; suffultory cell slightly tumid, to 20 μm diam. Androsporangia intercalary, solitary or paired, if gynandrosporous then well above oogonia, 23–25 μm long, 18 μm diam.; dwarf males long narrow clavate, 91–104(–113) μm long, 8–11 μm diam., two spermatozoids formed one above the other in tip, faintly septate.

Etymology: commemorates Alfred Douglas Hardy, the Victorian botanist who sent numerous specimens to G.S. West in the 1900’s and 1910’s and continued to study phytoplankton in Victorian reservoirs until the 1950’s (Entwisle 1990). The name Oe. victoriense West has been used for a different taxon.

Distribution: Western Australia and Victoria, in ponds and river pools.

The description in West (1909) is extremely brief, highlighting the length of the dwarf males, but the iconotype shows the spore wall with evenly spaced teeth. As the inner exospore wall of Oe. monile has longitudinal serrated ribs, and that of Oe. hardyi has a tight spiral of teeth, West’s (1909) figure 6a–b appears to fit the latter more closely.

The suffultory cell develops first, upon which dwarf males mature before the oogonia are initiated. The form of the dwarf males with internal antheridia, the morphology of the oospore, with a wide exospore sculptured below the outer layer, and general aspect similar to Oe. undulatum and Oe. monile suggest a position in Group P. The presence of a few short rhizoids on the base of the dwarf males may also indicate affinities with Group Q.

Specimens examined: Victoria: pond opposite Phillip Island Information Centre, New Haven, Entwisle 3133, 29 Dec 2001 (NSW). Western Australia: tributary of Hammersley R., pool in river bed, Fitzgerald River Nat.Pk, Towler 283a & Wilson, 10 Aug 2003 (NSW); Brixton Street wetland, Kenwick, Cherry 448, 9 Sep 2002 (NSW).

Diagnosis: Oedogonio kwangsiensi var. kwangsiensi simile sed costis undulatis levigatisque in oospora.

Type: Western Australia: Brixton Street wetland, Kenwick (32° 01’S; 115° 58’E), Cherry 447, 9 Sep 2002, (holo NSW).

Illustration: Fig. 3, i–l.

Nannandrous, idioandrosporous. Vegetative cells regular cylindrical, L/D 5–8, 40–74 μm long, (7–)10–19 μm diam., ♀ frequently narrow, 6–8 quite large pyrenoids; basal cell tall, narrow vase-like, 50–55 μm long, 10–12 μm diam., sometimes flattened on one side, holdfast digitoid; terminal cell (often oogonium) with rounded or shallowly peaked cap. Oogonium solitary to 3 in series, globose to ovoid, 32–44(–50) μm long, 32–36(–41) μm diam., (pore and) circumcision superior; oospore globose to barrel-shaped, top and bottom inset, oblique in the chamber, 35–39 μm long, 33–35 μm diam., inner exospore with broad, deep, undulate costae, mesospore ruby red; suffultory
cell 48–70 μm long, 25–29 μm diam. Androsporangium intercalary, single or paired, in groups, 11–16 μm long, 10–13 μm diam.; dwarf males clavate, on suffultory cell, body cell 29–35 μm long, 4.5–6 μm diam., antheridium with single spermatozoid extruded at maturity.

Etymology: commemorates George Israel Playfair, the honorary freshwater phycologist associated with the National Herbarium of New South Wales from 1902 to 1923. In the draft manuscript of his Census (Playfair 1917) Playfair notes ‘Oedogonium sp. long corrugate spore’ from Broughton Island, but did not complete the determination or include this collection (*Bottle 29*) in the Census or any other publication.

Distribution: Western Australia and New South Wales, in coastal wetlands.

The Brixton Street wetland sample contains numerous filaments with terminal solitary oogonia and the general aspect of the cosmopolitan *Oe. acrosporum* de Bary, but the equally common occurrence of intercalary series of oogonia and the pronounced depth of the costae favour inclusion in *Oe. kwangsiense* from China. The Australian material comes close to the type form of *Oe. kwangsiense* but has cylindrical cells, the costae are broad and smooth, and the basal cells are tall vase-shaped with a digitoid holdfast. This taxon is idioandrosporous, and the antheridium, while the fragile wall is persistent, appears to be extruded from the body cell of the dwarf male, rather than being a separate cell of a small plant as in both *Oe. acrosporum* de Bary ex Hirn and *Oe. tentoriale* Nordstedt & Hirn in Hirn.

Specimens examined: New South Wales: North Coast: Broughton Island, Dr E. Stokes (Playfair 29, 30), –1903? (NSW). Western Australia: Brixton Street wetland, Kenwick, *Cherry 447*, 9 Sep 2002 (NSW).

Supersection *Dispermatozoidiae*

Antheridia with paired spermatozoids. In macrandrous species the spermatozoids may be horizontal, that is lying in the antheridium one on top of the other, or vertical, where the spermatozoids are found side by side. In nannandrous species the dwarf male plantlet consists of a persistent body cell, sometimes a narrow vegetative cell, and above one or a series of discrete, external antheridia, each with two spermatozoids.

Group L

Macrandrous; spermatozoids one above the other in intercalary antheridia; oogonium opening a circumcision.

Oedogonium capricornicum Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: *Oedogonium* oogonio collari cylindrico aut terminale aut basale, circumcisione oogonii medio.

Type: Queensland: Burdekin River, downstream from Highway crossing, near Ayr (19° 37’S; 147° 24’E), *Reid 270103.04*, 27 Jan 2003 (holo NSW).

Illustration: Fig. 3, m–o.

Dioecious, macrandrous. *Vegetative cells* cylindrical, chloroplast reticulate, many small pyrenoids, slight sexual dimorphism, L/D (5–)8–12, (20♂–)23–32 μm diam.; *basal cell* elongate goblet-shaped, ridged disc, c. 80 μm long, c. 32 μm diam.; *terminal cell* domed.
Oogonium globose to slightly depressed globose, (63–)68–82 μm long, (68–)77–84 μm diam., with collar top and/or bottom, stained with tannin, median circumcision, narrowly open, internal pore; oospore globose to depressed globose, 59–61 μm long, 59–65 μm diam., smooth exospore, red mesospore; suffultory cell as vegetative cells. Antheridia solitary to groups of 4–8, 8–14 μm long, 16–20 μm diam., with a short supporting cell at least in initial stages, spermatozoids paired, horizontally separated.

Etymology: from the Tropic of Capricorn which covers the northern third of Australia, where this taxon is encountered.

Distribution: Tropical Australia.
A distinctive taxon and difficult to place. It has a lantern-shaped oogonium with a well defined median circumcision and thickened wall, which would place it close to *Oe. pratense* Transeau (1914) in subgenus *Prooedogonium*, or the nannandrous *Oe. confertum* Hirn and *Oe. perspicum* Hirn in Supersection *Monospermatozoidiae*. Paired spermatozoids in antheridia in small belts, a vase-shaped basal cell and dimensions and general vegetative form that agree with larger members of the subgenus *Oedogonium*, suggest its placement there, in Group L.

Specimens examined: Queensland: Type and Burdekin R., downstream from highway crossing, near Ayr, Reid 270103.05, 27 Jan 2003 (NSW). Western Australia: Camp Ck, Mitchell Plateau, Kenneally 11765a, 18 Jun 2002 (NSW);

Oedogonium bancroftii Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: *Oedogonio areolato-costato* simile sed oosporibus globosis vel subglobosis et proportionibus minoribus.

Type: Queensland: Lake Weyba, near Noosa (26° 27’S; 153° 05’E), *Cribb 587.1*, 26 Jul 1964 (holo BRI 704657).

Illustration: Fig. 4, a–f.

Monoecious/dioecious macrandrous. *Vegetative cells* narrow cylindrical, at first slightly capitellate near basal cell, L/D (5–)6–9(–10), (8–)9–11 μm diam.; *basal cell* elongate vase-like, basal pad deeply costate; *terminal cell* usually with blunt peaked cap. *Oogonium* spherical to ovoid, (27–)34–45 μm long, (29–)34–36 μm diam., circumcision superior, solitary, paired, triples and fours common, five in a row occasional; *oospor* spherical to subglobose, top and bottom inset, 31–34 μm diam., smooth on very outside, longitudinally denticulate-costate from basal and apical rings, some forking and anastomosis, inside, mesospore red?; *suffultory cell* terminally widely tumid, 27–32 μm upper diam. *Antheridium* solitary, either subepigynous or intercalary, 12–14 μm long, c. 9 μm diam.; spermatozoids 2, horizontally displaced.

Etymology: commemorated Dr Thomas Lane Bancroft, prominent epidemiologist and assiduous collector of natural history specimens throughout Queensland from the late 19th Century to WWI.

Distribution: known only from Queensland, associated with *Oe. varians* among stoneworts in coastal tidal lake (Cribb’s notes state ‘highly saline’).

As the oogonia appear to develop sequentially, one or two short cylindrical cells may be found between the tumid suffultory cell and the developed oogonia above. It is close to the description of North African specimens attributed to *Oe. paloense* Britton in Gauthier-Lièvre (1964), but Britton’s (1949) protologue based on Philippine material has solitary ovoid to ellipsoid oospores in similar shaped oogonia, a suffultory cell similar to vegetative cells, and antheridia in long series. *Oe. bancroftii* also resembles *Oe. areolato-costatum* Jao in Mrozińska (1985), but the dimensions of the Australian specimen are all half the size of the Chinese taxon, and the oospores are spherical rather than ovoid.
Nannandrous; dwarf males multicellular, antheridia external; oogonia opening through a pore.

Stephen Skinner & Entwisle var. nov.

Diagnosis: *Oedogonio starmarchio* var. *starmarchio* simile sed cellulo suffultorio inflate.

Type: New South Wales: North Western Plains: Weetalibah Waterholes (29°19’S, 147°50’E) *Dingley 050603.4*, 5 Jun 2003 (holo NSW).

Illustration: Fig. 4, g, h.

Nannandrous, gynandrosporous. **Vegetative cells** regular cylindrical, 40–120 μm long, 7–9 μm diam.; **basal cell** short vase, 20–23 μm long, c. 8 μm diam.; **terminal cell** truncated. *Oogonium* intercalary, solitary, obpyriform, 32–34 μm long, 24–30 μm diam., pore inframedian to inferior; **oospore** globose, filling chamber, covered in fine spines, mesospore red, 23–25 μm without spines (spines add c. 1 μm to radius); suffultory cell usually inflated, 39–50 μm long, 9–12 μm diam. **Androsporangia** intercalary, in upper filament, 23–27 μm long, 8 μm diam.; dwarf males on **suffultory cell**, with slightly inflated body cell (18–20 μm long, 8–9 μm diam.), one or two vegetative cells (18–20 μm long, 4.5 μm diam.) and one or more antheridial cells (7 μm long, 4.5–5 μm diam.), solitary? spermatozoid.

Etymology: for Weetalibah Waterholes in north-western New South Wales, from where the taxon was first recognized.

Distribution: known from South Australia, in a transient roadside swamp in limestone country, and New South Wales, on *Najas tenuifolia* in caustic (pH 9.5) artesian spring, and on *Chara* sp. in coastal creek.

There are a number of closely similar taxa with spiniferous spores and inferior pores to the oogonium. The Weetalibah specimen shows some characters in common with both *Oe. inframediale* Jao and *Oe. starmachii* Mroz., both of which occur in China (Jao 1979). While *Oe. inframediale* has an inflated suffultory cell, it has regular dwarf males, and the cells are 13–21 μm in diameter. *Oe. starmachii* as described by Mrozińska (1958) and Jao (1979) lacks the inflated suffultory cell but does have the multicellular dwarf males, and vegetative cells 9–14 μm in diameter. *Oe. excentriporum* (Jao) Tiffany is similar in dimensions, and has an inflated suffultory cell, but has a distinctly superior pore. Australian collections are the same as *Oe. starmachii* as described by Mrozińska (1985) in all aspects except the suffultory cell. We therefore recognize this taxon as a new variety of *Oe. starmachii*.

Fig. 5. Bulbochaete rodwayi: a, androsporangia and zooidangium; b, immature oogonium and dwarf male; c, mature oospore in oogonium; d, basal cell (Entwisle 2497); B. wuhanense var. spechtii: e, oogonium with androsporangium, dwarf males and oospore, with sketch of sculpturing (Specht A30); B. calospora var. murrayana: f, basal cell; g, branch with androsporangia and mature oospore, with sketch of sculpturing; h, immature oogonium with two dwarf males (Skinner 0401, Arnold & Towler). (Scales = 20 μm)
Bulbochaete C. Agardh

Bulbochaete rodwayi Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: *Bulbochaete* nannandriata oosporis quadriglobosis et glabris, nannandriis camelliformibus antheridiisque interne.

Type: Tasmania: pool in Melaleuca Ck, below Alexandra Ck junction, Port Davey Track, South West National Park (43° 25’S; 146° 08’E), *Entwisle 2497*, 3 May 1996 (holo MEL).

Illustration: Fig. 5, a–d.

Nannandrous, idioandrosporous? Thallus a densely intertwined cushion, visible to the naked eye. *Vegetative cells* subcylindrical, 48–56 μm long, 16–18 μm diam.: *basal cell* vase shaped, 18–20 μm diam. *Oogonium* squared globose, c.52 μm long and diam., median circumcision; *oospore* filling chamber, smooth, laminated thick exospore, mesospore red; suture in *suffultory cell* median, faint. *Androsporangia* in short lateral or terminal series, subtending a seta, c.16 μm long, 10–12 μm diam.; dwarf male goblet shaped, 23–25 μm long, c.10 μm diam., upper half antheridium, lower half rhizoidal, on suffultory cell.

Etymology: commemorates Leonard Rodway, botanist and natural history collector in Tasmania in the first half of the 20th Century.

Distribution: Tasmania, known only from the type locality, as free living cushions among mosses and leafy liverworts in high latitude stream.

A distinctive nannandrous *Bulbochaete* with squared globose smooth-walled oospores, and goblet-shaped dwarf males with internal antheridia. Unlike any reported *Bulbochaete* species both *B. rodwayi* and at least one population of *B. wuhanensis* var. *wuhanensis*, from Litchfield National Park in the Northern Territory, form dense masses of filaments and appear to be free living rather than epiphytes.

Diagnosis: *Bulbochaetae wuhanense* var. *wuhanense* similis, sed gynandrospora, antheridiis epigynis atque lateraliibus, oosporis verrucosis.

Type: Northern Territory: freshwater pool, South Bay, Bickerton Island (13° 46’S; 136° 13’E), *Specht A30*, 7 Jun 1948 (holo AD).

Illustration: Fig. 5, e.

Etymology: commemorates Raymond Louis Specht, Australian ecologist and member of the American-Australian Expedition to Arnhem Land in 1948.

Distribution: Northern Territory, on aquatic vegetation in tropical seasonal waterways.
Fig. 6. *Bulbochaete Gigantea* var. *glabra*: a, androsporangia; b, oogonium with dwarf male, sketch of sculpturing (*Divola s.n.*(*Skinner 0039*)); *B. kakaduensis*: c, basal cell; d, androsporangia and zooidandium; e, mature oogonium with dwarf males, oospore, and sketch of sculpturing (*Dostine, Metcalfe & Padovan A104*). (Scales = 20 μm)
Differs from *B. wuhanensis* var. *wuhanensis* from China in being gynandrosporous, and the sculpturing of the oospore being very finely warty.

Diagnosis: *Bulbochaetae calosporae* var. *calosporae* similis sed in dimensionibus brevior.

Type: New South Wales: South West Slopes: Corowa–Mulwala road (36° 00’S; 146° 16’E), *Skinner 0401*, *Arnold & Towler*, 27 Sep 2001 (holo NSW).

Illustration: Fig. 5, f–h.

Dioecious gynandrosporous. Thallus moderately large, open but infrequently branching. **Vegetative cells** subcylindrical, 36–45(–48) μm long, 11–14(–18) μm diam., finely spirally spinose; basal cell vase-like, 48 μm long, 20 μm diam., base ridged, spreading. *Oogonium* depressed globo-pyriform, 36–39 μm long, 43–45 μm diam., cingulum, opening supramedian (closed at maturity); oospore filling chamber, exospore with large, sharp edged scrobiculae, mesospore yellow; suture in suffultory cell supramedian to superior. *Androsporangia* epigynous or lateral, solitary or in series 2–4, 9–11 μm long, c. 9 μm diam.; dwarf males shortly clavate, 25–27 μm long, 7–9 μm diam., antheridia internal, two chambers, single spermatozoid each.

Etymology: named for the Murray River valley, in which floodplain the collection was made.

Distribution: New South Wales/Victoria Border: riverine system, on filamentous algae and stoneworts.

This taxon is close to cosmopolitan *B. intermedia* de Bary in size of features and has similar position of suffultory suture, but, with the finely spinose cells, and large scrobiculae, appears to be a small variety of *B. calospora* from China.

Diagnosis: *Bulbochaetae giganteae* var. *giganteae* similis sed parietibus glabris, oosporis areolatis scrobiculis.

Type: New South Wales: Northern Tablelands: Barleyfields Lagoon, near Uralla (30° 37’S; 151° 30’E), *Divola s.n.* [Skinner 0039], 30 May 1996 (holo NSW).

Illustration: Fig. 6, a, b.

Vegetative cells, 60–75(–80) μm long, 19–25 μm diam., smooth walled; basal cell vase like. *Oogonium* depressed globose, 43–45(–48) μm long, 58–68 μm diam.; oospore sculpturing of large, areolate scrobiculae, mesospore yellow; suture in suffultory cell
median to supramedian. *Androsporangia* in series 1–4, c. 12 μm long, c. 14 μm diam., subtending seta; dwarf males clavate to vermiciform, 57–60 μm long, c. 12 μm diam., antheridia internal.

Etymology: from *glaber, ra, rum* (Latin) smooth.

Distribution: New South Wales: transient swamp and creek pondages.

Differs from the widespread type variety in having cell walls smooth rather than finely helically spinose, and large open areolate scrobiculations on oospores. The report of *B. gigantea* in Skinner (1980) may refer to this taxon, as spinose cell walls were not reported. The specimen is missing, although other slides from the collection (Bullock Ck, *Skinner NED002*, Dec 1974(NE)) contain sterile fragments of a large *Bulbochaete* with smooth cell walls.

Bulbochaete kakaduensis Stephen Skinner & Entwisle *sp. nov.*

Diagnosis: *Bulbochaetae scrobiculatae* similis sed idioandrospora nannandriisque clavatis, stipa 22–23 μm, antheridio 9–16 μm longo.

Type: Northern Territory: Howard R., upstream of Pioneer Dr. (12° 33’S; 131° 08’E), *Dostine, Metcalfe & Padovan A104*, 30 May 2003 (holo NSW).

Illustration: Fig. 6, c–e.

Etymology: named for the Kakadu region of the Northern Territory over which the American–Australian expedition to Arnhem Land travelled and collected.

Distribution: Northern Territory, in still and flowing water.

Scott and Prescott (1958) described and figured the Bickerton Island specimen as *Bulbochaete elatior* Prings., illustrating clearly the fine scrobiculae. *B. elatior*, a cosmopolitan species, has smooth exospores. Scott and Prescott failed to mention if androsporangia were present. The Arnhem Land collections, and the Howard R. collection are idioandrosporous, and have dwarf males with almost clavate rather than goblet shaped body cells (as in *B. elatior*), and along with the fine scrobiculae on the oospore, make this a distinctive species.
Specimens examined: Northern Territory: freshwater pool, South Bay, Bickerton Is., Specht A30, 7 Jun 1948 (AD); freshwater marsh, behind dunes, Yirrkalla, Specht A80, 27 Aug 1948 (AD); Howard R., upstream of Pioneer Dr., Dostine, Metcalfe & Padovan A104, 30 May 2003 (NSW).

Acknowledgments
Thanks are due to the many co-workers and interested citizens who sent samples to the National Herbarium of New South Wales in the Botanic Gardens Trust, Sydney, Western Australia: Dorothy Edinger, Alan Lowrie, and Kevin Kenneally (CALM); Northern Territory: Mike Dostine, Peter Metcalfe and Simon Townsend (Water Labs, NP&WS); Queensland: David Reid, Townsville; New South Wales: Margaret Brock, Chris Cooper and Jill Divola in Armidale, and Simon Gartenstein at Sydney University, N.S.W. and our many colleagues here who included ‘green slime’ in their collections, and especially to the late Marion Więcek for translations from Polish, and Ms Alice Cheung for translations from Mandarin. All major herbaria in Australia checked their collections and loaned specimens, as did the British Museum and LD. ABRS provided the funding. Dr Teresa Mrozińska, Wł. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, provided encouragement in the early stages of this project.

References
Herring W (1914) Chlorophyceae III Ulothricales, Microsporales, Oedogoniales. Die Süßwasser-Flora Deutschlands, Österreichs und der Schweiz 6 (Gustav Fischer Verlag: Jena)
Jao Chin–Chih (1979) Monographia Oedogoniales Sinicae (Science Press: Beijing)

Manuscript received 2 September 2005, accepted 10 February 2006